Hamiltonicity thresholds in Achlioptas processes

نویسندگان

  • Michael Krivelevich
  • Eyal Lubetzky
  • Benny Sudakov
چکیده

In this paper we analyze the appearance of a Hamilton cycle in the following random process. The process starts with an empty graph on n labeled vertices. At each round we are presented with K = K(n) edges, chosen uniformly at random from the missing ones, and are asked to add one of them to the current graph. The goal is to create a Hamilton cycle as soon as possible. We show that this problem has three regimes, depending on the value of K. For K = o(log n), the threshold for Hamiltonicity is 1+o(1) 2K n log n, i.e., typically we can construct a Hamilton cycle K times faster that in the usual random graph process. When K = ω(log n) we can essentially waste almost no edges, and create a Hamilton cycle in n + o(n) rounds with high probability. Finally, in the intermediate regime where K = Θ(log n), the threshold has order n and we obtain upper and lower bounds that differ by a multiplicative factor of 3.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Avoiding small subgraphs in Achlioptas processes

For a fixed integer r, consider the following random process. At each round, one is presentedwith r random edges from the edge set of the complete graph on n vertices, and is asked to chooseone of them. The selected edges are collected into a graph, which thus grows at the rate of oneedge per round. This is a natural generalization of what is known in the literature as an Achlio...

متن کامل

A new upper bound for Achlioptas processes

We consider here on-line algorithms for Achlioptas processes. Given a initially empty graph G on n vertices, a random process that at each step selects independently and uniformly at random two edges from the set of non-edges is launched. We must choose one of the two edges and add it to the graph while discarding the other. The goal is to avoid the appearance of a connected component spanning ...

متن کامل

On the Connectivity Threshold of Achlioptas Processes

In this paper we study the connectivity threshold of Achlioptas processes. It is well known that the classical Erdős-Rényi random graph with n vertices becomes connected whp (with high probability, i.e., with probability tending to one as n → ∞) when the number of edges is asymptotically 1 2n log n. Our first result asserts that the connectivity threshold of the well-studied Bohman-Frieze proce...

متن کامل

Explosive percolation: a numerical analysis.

Percolation is one of the most studied processes in statistical physics. A recent paper by Achlioptas [Science 323, 1453 (2009)] showed that the percolation transition, which is usually continuous, becomes discontinuous ("explosive") if links are added to the system according to special cooperative rules (Achlioptas processes). In this paper, we present a detailed numerical analysis of Achliopt...

متن کامل

Offline thresholds for Ramsey-type games on random graphs

In this paper, we compare the offline versions of three Ramsey-type oneplayer games that have been studied in an online setting in previous work: the online Ramsey game, the balanced online Ramsey game, and the Achlioptas game. The goal in all games is to color the edges of the random graph Gn,m according to certain rules without creating a monochromatic copy of some fixed forbidden graph H. Wh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Random Struct. Algorithms

دوره 37  شماره 

صفحات  -

تاریخ انتشار 2010